柳州源创电喷技术有限公司【官网】
86-0772-2619018      中文版 | English
您现在的位置:首页新闻动态公司新闻 > 氧传感器和三元催化的那些事

字号:   

氧传感器和三元催化的那些事

浏览次数: 日期:2015年6月4日 09:23

三元催化器和氧传感器有什么用?

汽车排放污染物主要有HC(碳氢化合物)、NOx(氮氧合物)、CO(一氧化碳)以及燃烧未完成的微粒等。其中碳氢化合物、氮氧合物以及一氧化碳就是传统意义上的“大三元”,这就是三元催化器为何被叫做“三元催化器”的原因。三元催化器其实是一个成型烧结的多孔陶瓷体,其表面被添加了铂,铑,钯等催化元素,可以增强碳氢化合物、氮氧合物以及一氧化碳这三种气体的活性,促使其尽可能多地完成氧化还原反应。其中一氧化碳和碳氢化合物在高温条件下经过氧化之后会变为二氧化碳和水,而氮氧化合物在高温条件下则可以还原成氮气和氧气。氧传感器1976年诞生于德国博世公司,利用其特有的电化学反应原理来探测发动机尾气排放中的氧气含量,ECU根据氧传感器的持续探测结果,持续判断喷油嘴之前的喷油量是多了还是少了,并对喷油量进行持续调整,让发动机气缸在不同的转速以及动力输出条件下尽量达成优良燃烧的目的。

    在高温环境下(300摄氏度以上),氧传感器捕捉发动机尾气中的残留氧气在探测头内发生电化学反应,反应中两极电离吸附的带电氧离子数量差异导致产生电动势,其电压周期波动值范围多在0.1~0.9V之间波动,大于0.45V表示空燃比小,燃烧不太完全;小于0.45V则表示空燃比大,混合燃气过于稀薄。

氧传感器和三元催化器是如何配合工作的?

氧传感器和三元催化器是相辅相成的。一般而言,一辆车上有两个氧传感器,被分别安装在三元催化器的前后。我们可以通过假设一种“燃烧不充分”的情况来看看氧传感器和三元催化器如何配合工作:

燃烧不完全的尾气出来之后经过氧传感器A,氧传感器A发现尾气中氧含量偏低,需要降低喷油量;

尾气接下来经过三元催化器发生氧化和还原反应,尽管氮氧化合物会被催化还原出氧,但由于之前燃烧不充分,尾气中一氧化碳和碳氢化合物较多,氧化反应消耗掉尾气中更多的残余氧,导致尾气中氧含量进一步下降。

尾气紧接着通过氧传感器B,氧传感器B进一步确认尾气中氧含量降低。

氧传感器A和氧传感器B开了个会,兄弟俩一合计,向ECU发出正式通知:哥们儿你喷油喷多了!于是ECU根据氧传感器指令调整喷油量,直到“两兄弟”满意为止。同理,如果尾气中氧含量偏高,“两兄弟”将会指示ECU增加喷油量。

氧传感器A和氧传感器B开了个会,兄弟俩一合计,向ECU发出正式通知:哥们儿你喷油喷多了!于是ECU根据氧传感器指令调整喷油量,直到“两兄弟”满意为止。同理,如果尾气中氧含量偏高,“两兄弟”将会指示ECU增加喷油量。这个时候哪怕油气混合理想,也可能因为产生过多的氮氧化合物导致尾气中氧含量降低。如果仅凭一个氧传感器A监测尾气,很有可能误判为喷油过量;而仅凭三元催化器尾端的氧传感器B,则因为氮氧化合物的还原出氧,从而误判喷油不足。

第二种情况就是冷启动一段时间,发动机温度没有达到稳定,但氧传感器却升温至工况温度之后。由于尾气中氮氧化合物含量偏低,氧含量偏高,氧传感器A会判断喷油量低;而尾气通过三元催化器之后,一氧化碳和碳氢化合物经过氧化反应,让尾气中氧含量偏低,也会导致氧传感器B出现误判。

从这个意义上看,三元催化器前端和后端都必须有氧传感器配合完成尾气监测。如果没有三元催化器的参与,所谓的三元催化器前后端氧传感器也就不存在“前后端”的区别了,这就相当于是一个氧传感器单独工作,这种情况是极易产生误判的。前面已经说了,氧传感器在300摄氏度以上的高温环境下才能进入正常工况。因此为了让氧传感器尽早进入状态,汽车工程师都有意提升发动机冷启动时的怠速转速,即加大喷油量缩短升温时间——这就是为什么大多数车辆冷启动时怠速偏高的主要原因之一,哪怕是较先进的带有电加热功能氧传感器,加热时间也需要20~30秒。换句话说,在氧传感器达到工况温度之前,氧传感器不能对ECU的喷油控制给出数据指导。

现在氧传感器领域中出现了一种“宽域氧传感器”,这种氧传感器不仅可以准确探测空燃比10~20的宽广范围,而且可以更加准确地监测尾气,基本上相当于直接从气缸内泵入或泵出气体进行直接监测,未来将成为氧传感器的主流。

所属类别: 公司新闻

该资讯的关键词为:

关于企业
浏览扫描手机站
服务热线(HOTLINE)
86-0772-2619018
地址(ADD)
广西柳州市鱼峰区洛维工业园洛园路16号

邮箱(E-MAIL)
lz2619018@vip126.com